EYFS	
EYFS Early Learning Goals	Number ELG - Have a deep understanding of numbers to 10 , including the composition of each number. - Recall fluently number bonds up to 5 and some number bonds to 10. - Recognise quantities without counting up to 5 . Numerical Patterns ELG Children at the expected level of development will: - Count reliably beyond 20 , recognising the pattern of the counting system. - Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity. - Explore patterns within numbers to 10 , including doubling, halving and sharing.
Year 1	
take away, dista How much more is...? less, ten less... how man	Basic mathematical vocabulary ce between, difference between, less than. How many more? How much greater? How many fewer? subtract, take (away), minus, leave, how many are left/left over? how many have gone? one less, two fewer is... than...? how much less is...? difference between half, halve = equals, sign, is the same as Instructional vocabulary start from, start with, start at look at point, to show me
Solve one-step proble	National curriculum link: s involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.

Happy, successful, curious communicators

Objectives:
To be able to count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s .
Using grouping and arrays children understand multiplication is commutative.

Happy, successful, curious communicators

Multiples Count in multiples supported by concrete objects in equal groups.

Repeated addition

Add equal groups of objects

08.0808

Arrays

Create arrays using counters/ cubes to show multiplication sentences.

Repeated addition
Pictorial representation and number lines to calculate repeated addition sentences

0123456789101112131415

Arrays

Draw arrays in different rotations to find commutative multiplication sentences.

0000

$2 \times 4-8$

Use an array to write multiplication sentences and reinforce repeated addition

$5 \times 3=15$

$3 \times 5=15$

$$
\begin{aligned}
& 5+5+5=15 \\
& 3+3+3+3+3=15
\end{aligned}
$$

Year 2

Basic mathematical vocabulary:

lots of, groups of \times, times, multiply, multiplied by multiple of once, twice, three times... ten times... times as (big, long, wide... and so on) repeated addition array row, column double, halve share, share equally

Instructional vocabulary:

carry on, continue, repeat, what comes next? predict describe the pattern describe the rule find, find all, find different, investigate

National curriculum link:

Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (x), division (\div) and equals (=) signs.

Objectives:

- Recall and use multiplication facts for 2,5 and 10 multiplication tables including recognising odd and even numbers.
- Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot.
- Solve problems involving multiplication, using materials, arrays, repeated addition, mental methods, including problems in contexts.

Concrete
Pictorial
Abstract

Happy, successful, curious communicators

Happy, successful, curious communicators

Happy, successful, curious communicators

Community Trust

Year 3

Basic mathematical vocabulary

lots of, groups of \times, times, multiply, multiplication, multiplied by multiple of, product once, twice, three times... ten times... times as
(big, long, wide... and so on) repeated addition array row, column double, halve share, share equally one each, two each, three each...

Instructional vocabulary

carry on, continue, repeat what comes next? Predict, describe the pattern, describe the rule, find, find all, find different, investigate, choose, decide, collect

National curriculum link:

Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers.

Objectives:

- Recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables.
- Solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects.

Concrete	Pictorial	Abstract	

	Children can represent the work they have done with place value counters in a way that they understand. They can draw the counters, using colours to show different amounts or just use circles in the different columns to show their thinking. Relationships between multiplication, division and fractions	

Basic mathematical vocabulary

lots of, groups of times, multiply, multiplication, multiplied by multiple of, product once, twice, three times... ten times... times as (big, long, wide... and so on) repeated addition array row, column double, halve, factor, multiple

Instructional vocabulary

carry on, continue, repeat what comes next? predict, describe the pattern, describe the
rule
pattern, puzzle, calculate, calculation, mental calculation, method, jotting, answer right, correct, wrong, what could we try next? how did you work it out? number sentence, sign, operation, symbol, equation

National curriculum link:

Mutiply two-digit and three-digit numbers by a one-digit using formal written layout.

Objectives:

- Recall multiplication and division fact for multiplcation tables up to 12×12.
- Recognise and use factor pairs and commutaivity in mental calculations.
- Use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiliyng together three numbers.
- Solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects.

Formal column method with place value counters or base 10 (at the first stage- no exchanging) 3×23 Make 23, 3 times. See how many ones, then how many tens	Using known facts If $2 \times 3=6$ then $200 \times 3=600$ and	Grid method (if needed for conceptual understanding)346×9			
	600	X	300	40	6
	$\div 3=200$	9			
	Distributivity	Short multiplication -Expanded			
	$3 \times(2+4)=3 \times 2+3 \times 4$	Short multiplication -Expanded			

Formal column method with place value counters 6×23

Step 1: get 6 lots of

Step 2: 6×3 is 18.
Can I make an exchange? Yes! Ten ones for one ten....

Step 3: 6×2 tens and my extra ten is 13 tens. Can I make an exchange? Yes! Ten tens for one hundred...

the ' $2+4$ ' into 3 times 2 and 3 times 4

346
X 9
$54(9 \times 6)$
$360(9 \times 40)$
$\underline{2700}(9 \times 300)$
3114

Leading to compact:

346
X 9
3104
45

Representing problems

Multiply a number by itself and then make one factor one more and the other one less.
What do you notice?
Does this always happen?
Eg $4 \times 4=16 \quad 6 \times 6=36$
$5 \times 3=15 \quad 7 \times 5=35$
Try out more examples to prove your thinking.

Step 4-
what do I have I each column?

Happy, successful, curious communicators

Happy, successful, curious communicators

Place value materials to represent

 calculations Fill each row to make 126. Move on to place value counters to show how we are finding groups of a number.We are multiplying by 4 so we need 4 rows.

Add up each column, starting with the ones making any exchanges needed.

Calculations
4×126

A group of friends earns 580 by washing cars
They share the money equally.
They get £16 each.
How many triends are in the group?
\square $\overline{1}_{\text {maxi }}$

Place $<>$ or $=$ in these number sentences to make them correct
$50 \times 4 \square 4 \times 50$
$4 \times 50 \square 40 \times 5$
$200 \times 5 \square 3 \times 300$

Happy, successful, curious communicators

Wrekin View

Year 5

Basic mathematical vocabulary

lots of, groups of times, multiply, multiplication, multiplied by multiple of, product once, twice, three times... ten times... times as (big, long, wide... and so on) repeated addition array row, column double, halve share, share equally factor, multiple, prime,
composite

Instructional vocabulary

carry on, continue, repeat what comes next? predict, describe the pattern, describe the rule find, find all, find different, investigate

National curriculum link:
Multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for twodigit numbers.

Objectives:

- Identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers.
- Know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers.
- Multiply numbers mentally drawing upon known facts.
- Multiply whole numbers and those involving decimals by 10, 100 and 1000.

Community Trust

Place value materials to represent calculations if needed (see Year 4)

Grid method
(if needed for conceptual understanding)

Short multiplication
Use expanded method first if needed to build conceptual understanding

Happy, successful, curious communicators

Representing problems:

40 cupcakes cost $£ 3.60$,
How much do 80 cupcakes cost?
How much do 120 cupcakes cost?

Year 6

Basic mathematical vocabulary

lots of, groups of times, multiply, multiplication, multiplied by multiple of, product once, twice, three times... ten times... times as (big, long, wide... and so on) repeated addition array row, column double, halve share, share equally factor, multiple, prime,
composite

Instructional vocabulary

Happy, successful, curious communicators
carry on, continue, repeat what comes next? predict, describe the pattern, describe the rule find, find all, find different, investigate

National curriculum link:

Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication.
Objectives:

- Perform mental calculations, including with mixed operations and large numbers.
- Identify common factors, common multiples and prime numbers.
- Use their knowledge of the order of operations (BODMAS) to carry out calculations involving the four operations.

```
Using known facts
If 2 x 3 = 6 then 0.2 x 3 =0.6 and 0.02 x 3 = 0.06
Then apply known facts to decimal multiplication 0.75 < 6
0.7\times6=4.2
0.05 x 6 = 0.3
4.2+0.3=4.5
Make explicit links between decimals and money
£2.56 = 256p
Work in pence and convert back at the end of the calculation
Use place value knowledge to remove the decimal for calculation
24.3 x 6 =
Make ten times bigger = 243 x 6 243
x 6 = 1458
Make ten times smaller = 145.8
```


Long multiplication:

Use expanded method first if needed to build conceptual understanding

Multiplying decimals

Children must understand that the number you are multiplying by needs to be placed under the ones section and the decimal place does not move.

Representing problems

Answer: 3224

Amy is given the calculation 5413×600. She says, "I can do this without a written method." Write down the mental steps you think Amy could do.

Progression in Multiplication at Wrekin View

11 Ally chooses a whole number
When she mutiplies her number by 4 , the answer is less than 100 When she multiplies her number by 5 , the answer is greater than 100
Write a number that Ally could have started with.

